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ABSTRACT: Reconfigurable optical materials are critical to
realizing light control in eyewear or architectural windows. Here,
we report on the electrical reconfiguration of the selective reflection
of cholesteric liquid crystals (LCs). The distinctive responses
detailed here are enabled by the preparation of a structurally chiral
polymer stabilizing network that enforces anchoring of a low-
molar-mass liquid crystalline media with positive dielectric
anisotropy. The pitch of the reflective optical elements is directly
regulated by a dc field, resulting in red or blue reflection wavelength
tuning or broadening. The use of the positive dielectric LC host in
concert with optimization of the material preparation conditions
allows for reorientation of the LC molecules to achieve an optically
clear state (homeotropic orientation) by the application of an ac
field. In this way, the selective reflection of the optical elements can
be moved, widened, and turned on and off. The electro-optic characteristics of these materials are another step forward to
enabling the use of these materials in optics and photonics.

■ INTRODUCTION
Reconfiguration of the optical properties of materials enables
functional performance benefits in consumer goods, automo-
biles, and aerospace systems. Dynamic changes to optical
material properties including absorption, diffraction, reflection,
and scatter have been the subject to intense research. Various
stimuli are capable of triggering optical reconfiguration of these
properties including heat, light, chemical, and electric field.
Chromic devices (photochromic and electrochromic) are
increasingly widespread in light control applications as
wearables or in windows.
Liquid crystalline materials, pervasive in the display industry,

are synonymous with stimuli-induced reconfiguration of optical
properties. Of particular interest is the inherent and selective
reflection of the cholesteric liquid crystal (LC) phase.1,2 This
phase forms naturally in chiral liquid crystalline molecules but is
more commonly formulated via chirality transfer from a dopant
to a nematic LC host.3−6 In this way, the spectral properties of
this phase are governed by the composition of the formulation
and can be readily adjusted to prepare optical elements across
the electromagnetic spectrum (UV to long wavelength infrared,
∼300−10 000 nm).
Considerable research has examined thermal,7−12 pho-

tonic,13−15 and electrically16−19 induced adjustment to the
optical properties of cholesteric LCs. A significant fraction of
these prior research efforts has focused on electrically induced
switching between a transparent and scattering state, commonly
referred to as a polymer-stabilized cholesteric texture.5,6,20−26

These devices switch from an optically transparent state into a

scattering state by the application of an electric field, which
orients the LC into a focal conic texture.
Here, we focus on dynamic reconfiguration of the reflection

band gap of polymer-stabilized cholesteric liquid crystals
(PSCLCs). Recent research has reported the ability to switch
the reflection on or off,27 tune,28−31 or broaden3,19,32,33 the
selective reflection of these materials. Of relevance to the work
detailed here, we have reported on the ability to electro-
mechanically distort a polymer stabilizing network incorporated
in the material system that directly affects the pitch of the low-
molar-mass cholesteric LC phase.32−34 Put succinctly, the
polymer stabilizing network retains a structural chirality derived
from the preparation conditions. To date, these effects have
been consistently observable only in compositions prepared
with negative dielectric anisotropy (Δε < 0) nematic LCs.
Accordingly, upon the application of a dc field, the liquid
crystalline host does not initially reorient to the field direction
enabling an ion-mediated distortion of the structurally chiral
polymer stabilizing network to act and enforce pitch changes
observable as bandwidth broadening,3,19,32,33 red-shifting
tuning,28−30 blue-shifting tuning,31 and scatter.27

Here, we report the refinement and optimization of the
materials chemistry to realize complete optical reconfiguration of
the reflection band gap of polymer-stabilized cholesteric LCs in
which the reflection notch can be tuned or broadened as well as
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switched on and off. The switchability of this material system is
enabled by the use of conventional, positive dielectric
anisotropy nematic LCs (Δε > 0). In the applied dc field
strengths examined here, the polymer stabilizing network is
sufficiently strong to enforce and retain the coupling of the
alignment of the low-molar-mass LC to the structural chirality
of the polymer stabilizing network. Application of a strong ac
field can overcome the favorable interaction of the LC and the
polymer network, aligning the LC into the homeotropic
orientation. We demonstrate pixelated addressability in which
four pixels can be distinctly reconfigured to exhibit an optically
clear region adjacent to pixels that exhibit red, green, and blue
reflections.

■ RESULTS AND DISCUSSION
The material systems examined here is formulated with the
chiral dopants and chiral LC monomer (SL04151, AlphaMi-
cron, Inc) illustrated in Scheme 1. Samples were prepared over

a range of monomer concentrations based on either a negative
dielectric nematic LC host MLC-2079 (Merck) or a positive
dielectric nematic LC host E7 (Merck). Polymer stabilization
was photoinitiated by Irgacure 369 (BASF). Evident in Figure
1a, in a composition containing 6 wt % SL04151 employing the
positive dielectric LC host E7, a large magnitude red shift in the
selective reflection of the cholesteric LC is observable upon the
application of a dc field. At the appropriate ac field strengths
necessary to overpower the alignment of the low-molar-mass
LC to the structurally chiral polymer network, the reflection
can be removed (Figure 1b). Complete and repeatable
switching was observed by the application of a 150 V (1
kHz) ac field with concurrent application of a dc bias, yielding
an optical element in which the reflection can be tuned and
rapidly switched on and off.
Electro-optic control of the orientation of the LC molecules

is the basis of modes widely used to regulate the transmission of
light through color filters to yield full color and high-resolution
displays. In Figure 2, a material composition is formulated and
prepared to exhibit blue-shifting tuning31 of the reflection. An
alignment cell was constructed with four pixels, locally
addressable by a voltage source. The selective reflection of
the optical element is locally reconfigured from the infrared
(IR) (Figure 2a) to exhibit a single red pixel (Figure 2b), red
and green pixels (Figure 2c), red, green, and blue pixels (Figure
2d), and an optically clear (homeotropic), red, green, and blue
pixels (Figure 2e). As in Figure 1, the local control of the
reflection color is governed by the magnitude of the dc field

strength and the switchability is enabled by the overlay of a 150
V (1 kHz) ac field to induce a homeotropic orientation. Upon
the removal of the field, the local optical properties within a
pixel restored to the original selective reflection.
Adjusting the preparation conditions (see Experimental

Section) to prepare the PSCLCs examined here and in our
prior reports distinguishes the electro-optical output. By
reducing the photoinitiator concentration and preparing with
a 3 min exposure of 100 mW/cm2 UV light, the PSCLC optical
element now allows for electrical control of the bandwidth
(Figure 3i−iv).3,19,32,33 Here, the application of 20 V dc (1.33
V/μm) causes a sevenfold increase in the reflection bandwidth.
Once again, overlaying a 250 V (1 kHz) ac field allows for
switchability of the electrically induced broad reflection (Figure
3v). This device is reticent to the use of electrochromic
materials in autodimming mirrors but switches faster with
greater dexterity in color control.
The three examples hereto are based on a polymer stabilizing

network composed of 6 wt % monomer concentration, initiated
with a 0.4−1.5 wt % photoinitiator, and subjected to various
UV exposures (intensity and duration). We conclude this study
by illustrating the critical role of monomer concentration in
realizing the electro-optic reconfigurability reported here. As
evident in Figure 4, increasing the concentration of the chiral
liquid crystalline diacrylate monomer SLO4151 (Scheme 1)
reduces the magnitude of the response and eventually mutes
any sensitivity of the material system to an applied dc or ac
field. Evident in the results in Figure 4, the strength of the
polymer stabilizing network strongly influences the sensitivity
of the optical element to the magnitude of the applied electric
field. Also evident in Figure 4d, the formation of robust, highly

Scheme 1. Chemical Structures of the Photoinitiator
(Irgacure 369), Chiral Dopants (R1011 and R811), and a
Chiral LC Monomer (SL04151) Employed in This
Examination

Figure 1. (a) Red-shifting tuning of the selective reflection of a
PSCLC by the application of dc voltage of 0, 30, 50, and 60 V dc. (b)
Reflection switching of the PSCLC band gap is induced by the
application of 150 V ac. (c) Reconfiguration of the selective reflection
(tuning and switching) is illustrated in sequential transmission spectra
(i) 0, (ii) 40, (iii) 60, and (iv) 70 V dc. Reflection switching of (i−iv)
was incuded with 150 V ac (1 kHz). See Movie 1 in the Supporting
Information. The sample was formulated by mixing 0.4 wt % I-369, 6
wt % SL04151, 3 wt % R1011, and 90.6 wt % E7 and prepared by
exposing to 100 mW/cm2 365 nm wavelength UV light for 3 min.
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cross-linked polymer networks at large monomer concen-
trations prevents an observable optical response.
The electro-optic response of the samples discussed hereto is

summarized and contrasted in Figure 5. Upon preparation, the
PSCLCs exhibit uniform distribution in the pitch across the
sample thickness (previously measured via confocal micros-
copy28) (Figure 5a). From the electro-optic responses evident
in Figures 1−4, the deformation of the polymer network to an
applied field is strongly dependent on the preparation
conditions of the samples, as detailed in a parallel report.31 It
should be noted that in all cases detailed here, the optical

properties of the PSCLC return to the original selective
reflection upon removal of the applied electric field.
In the results detailed in Figure 3, bandwidth broadening is

observable when the pitch is distorted nonuniformly across the
sample thickness. Evident in the illustration and prior
characterization via confocal microscopy,33 the local pitch is
expanded near the positive electrode, whereas the pitch near
the negative electrode is compressed. The structurally chiral
polymer network in the case of the red- and blue-shifting
elements is distinguished. In samples that exhibit red shift, as
illustrated and confirmed in the confocal examination of
pitch,33 while the pitch is expanded near the positive electrode
and contracted near the negative electrode, the pitch in the
central 6−12 μm region of the sample is increased uniformly.
Conversely, adjusting the preparation conditions such that the
samples are prepared with extensive UV irradiation so as to
induce blue shifting tuning, the average pitch is reduced by
deformation, yielding a blue shift in the selective reflection.31

The sensitivity of the electro-optic response to the
preparation conditions and photoinitiator concentration have
been detailed in a recent report.31 Summarized here, photo-
polymerization of the diacrylate monomers reaches full
conversion in less than a minute of exposure. However, evident
in this report and our prior studies, extended UV irradiation
differentiates the electro-optical response when photopolyme-
rization is initiated with aminoketone photoinitiators such as
Irgacure 369. We have hypothesized that this associated with
the postfunctionalization (reaction) of the residual initiator and
the polymer network. The morpholino group of Irgacure 369 is
known to be an efficient trap for cations, increasing the
sensitivity of the polymer network to ionic interaction. Further,
heterogeneous distribution of these fragments across the
sample thickness could yield heterogeneous deformation that
could explain the nuanced electro-optic outputs we have
observed.

■ CONCLUSIONS

This report details complete control of the spectral reflection of
cholesteric LCs, enabled by the optimization of material
concentration and preparation that allows for these devices to
be based on positive dielectric anisotropy LCs. Preparing these
optical elements on this type of LC allows for them to be
reoriented to an applied ac field. Accordingly, the optical
elements have distinctive functional performance wherein the
presence, position, and breadth of the selective reflection can be
reconfigured. The dynamic control of the spectral content of
these materials can also be spatially manipulated. The material
system reported here extend and open up new application
avenues for these materials spanning aerospace, consumer
goods, architecture, and sensing.

Figure 2. Control of color in PSCLC optical elements separated into four addressable pixels: (a) 0 V (IR), (b) 3 V dc was applied to the upper right
pixel (red), (c) 6 V dc was concurrently applied to the upper left pixel (green), (d) 9 V dc was concurrently applied to the bottom left pixel (blue),
and (e) 250 V ac (1 kHz) was applied to the bottom right pixel (homeotropic). The blue-shifting sample was formulated by mixing 1.5 wt % I-369, 6
wt % SL04151, 5 wt % R1011, 5 wt % R811, and 82.5 wt % E7 and prepared by exposing to 250 mW/cm2 UV light for 30 min.

Figure 3. Concurrent switching and broadening of the selective
reflection of a PSCLC optical element. (i) 0 V dc, (ii) 5 V dc, (iii) 10
V dc, (iv) 20 V dc, and (v) application of 250 V ac at 1 kHz switches
the alignment of the PSCLC to the homeotropic orientation from any
of the states (i−iv), removing the selective reflection. This sample was
formulated by mixing 1.5 wt % I-369, 6 wt % RM82, 3 wt % R1011,
and 89.5 wt % E7 and prepared by exposing to 150 mW/cm2 UV light
for 3 min.

Figure 4. Red shift in the selective reflection of the PSCLC optical
elements with various polymer concentrations: (a) 6, (b) 8, (c) 10,
and (d) 30 wt % over the range of dc voltages up to 300 V.
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■ EXPERIMENTAL SECTION

Preparation of PSCLCs. Alignment cells were prepared
from indium tin oxide-coated glass slides (Colorado Concepts).
The substrates were then cleansed in acetone and methanol and
treated with oxygen plasma. The substrates were subsequently
coated with a polyimide alignment layer. The alignment layers
were rubbed with a cloth, and the cell was constructed to
ensure a planar alignment condition. The cell gap was
controlled by mixing 15 μm thick glass rod spacers into an
optical adhesive. Samples were prepared by mixing 0.4−1.5 wt
% of the photoinitiator Irgacure 369 (BASF), two right-handed
chiral dopants (R1011 and R811, Merck), 6 wt % of an achiral
LC monomer (RM82, Merck) or a right-handed chiral LC
monomer (SL04151, AlphaMicron, Inc.), and a negative Δε
(MLC-2079, Δε = -6.1, Δn = 0.15, TNI = 102 °C at λ = 589 nm,
Merck) or positive Δε (E7/TNI = 58 °C, Δε = 13.8, Δn =
0.2253 at λ = 589 nm, Merck) nematic LC. The polymer
stabilizing network was formed within the samples by
photoinitiated polymerization with 100−250 mW cm−2 of
365 nm light (Exfo) for 3−30 min. The photoinitiator
concentration and the duration of UV exposure is the primary
differentiator for the electro-optic responses reported here (red-
shifting tuning, blue-shifting tuning, and bandwidth broad-
ening). More specifically, for PSCLCs to exhibit bandwidth
broadening, a small amount of I-369 (0.4 wt % or lower) is
used to initiate polymerization, triggered by comparatively
lower intensity light (here, 100 mW/cm2 for 3 min). To induce
red-shifting tuning, we formulated the PSCLCs with 0.5−0.8 wt
% I-369 and initiated polymerization with 100 mW/cm2 for 5
min. Finally, blue-shifting tuning was realized in PSCLC
samples prepared with 1−1.5 wt % I-369 and initiated with
comparatively high intensity exposure, 250 mW/cm2 for 30
min. To ensure homogeneous curing conditions, the cell was
rotated at an angular velocity of 2 Hz during polymerization.
Although the samples prepared with more traditional, one-sided
curing exhibit electro-optic responses similar to that reported
here, the consistency and sample-to-sample repeatability are

improved by rotating the sample during curing. All materials
were used as received without any purification.

Experimental Setup and Measurements. Transmission
spectra were collected with a fiber optic spectrometer. Unless
otherwise mentioned, the white light probe was right-handed
circularly polarized. Transmission spectra were collected before,
during, and after the application of dc fields with the scanning
rate of 1 V s−1 or directly applied to the target voltage.
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